题目

设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3﹣3x2﹣sin(πx)的对称中心,可得=(  )   A. 4023 B. ﹣4023 C. 8046 D. ﹣8046 答案:D解:由题意可知要求的值, 易知,所以函数(x)=x3﹣3x2﹣sin(πx)图象的对称中心的坐标为(1,﹣2), 即x1+x2=2时,总有f(x1)+f(x2)=﹣4 ∴+f()+…+f()+f()=﹣4×4023 ∴=﹣8046故选D.
数学 试题推荐
最近更新