题目

如图,直角三角形ACB中,CD是斜边AB上的中线,若AC=8cm,BC=6cm,那么△ACD与△BCD的周长差为 2 cm,S△ADC=  cm2. 答案:考点: 直角三角形斜边上的中线. 分析: 过C作CE⊥AB于E,求出CD=AB,根据勾股定理求出AB,根据三角形的面积公式求出CE,即可求出答案. 解答: 解:过C作CE⊥AB于E, ∵D是斜边AB的中点, ∴AD=DB=AB, ∵AC=8cm,BC=6cm ∴△ACD与△BCD的周长差是(AC+CD+AD)﹣(BC+BD+CD)=AC﹣BC=8cm﹣6cm=2cm; 在Rt△ACB中,由勾股定理得:AB==10(cm), ∵S三角形ABC=AC×BC=AB×CE, ∴×8×6=×10×CE, CE=4.8(cm), ∴S三角形ADC=AD×CE=××10cm×4.8cm=12cm2, 故答案为:2,12. 点评: 本考查了勾股定理,直角三角形斜边上中线性质,三角形的面积等知识点,关键是求出AD和CE长.
数学 试题推荐