题目

已知圆x2+y2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b对称,(1)求k、b的值;(2)若这时两圆的交点为A、B,求∠AOB的度数. 答案:解:(1)圆x2+y2+8x-4y=0可写成(x+4)2+(y-2)2=20.∵圆x2+y2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b对称,∴y=kx+b为以两圆圆心为端点的线段的垂直平分线.∴×k=-1,k=2.点(0,0)与(-4,2)的中点为(-2,1),∴1=2×(-2)+b,b=5.∴k=2,b=5.(2)圆心(-4,2)到2x-y+5=0的距离为d==.而圆的半径为2,∴∠AOB=120°.
数学 试题推荐