题目

设函数f(x)=2cos2x+2sinxcosx-1(x∈R)的最大值为M,最小正周期为T.(1)求M、T;(2)10个互不相等的正数xi满足f(xi)=M,且xi<10π(i=1,2,…,10),求x1+x2+…+x10的值. 答案:解:f(x)=sin2x+cos2x=2sin(2x+),                                   (1)M=2,                                                               T==π.                                                               (2)∵f(xi)=2,∴2xi+=2kπ+,xi=kπ+(k∈Z).                            又0<xi<10π,∴k=0,1…,9.∴x1+x2+…+x10=(1+2+…+9)π+10×=π.
数学 试题推荐