题目
已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点. (1)求m的取值范围,写出当m取值范围内最大整数时函数的解析式; (2)题(1)中求得的函数记为C1,当n≤x≤﹣1时,y取值范围是1≤y≤﹣3n,求n值.
答案:解:(1)∵函数图象与x轴有两个交点, ∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0, 解得:m<且m≠0. ∵m为符合条件的最大整数, ∴m=2. ∴函数的解析式为y=2x2+x. (2)抛物线的对称轴为x=﹣=﹣. ∵n≤x≤﹣1<﹣,a=2>0, ∴当n≤x≤﹣1时,y随x的增大而减小. ∴当x=n时,y=﹣3n. ∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去). ∴n的值为﹣2. 【