题目
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的坡度为1:,且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).
答案:【分析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE═==x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE即可求出x的长. 【解答】解:∵AF⊥AB,AB⊥BE,DE⊥BE, ∴四边形ABEF为矩形, ∴AF=BE,EF=AB=2 设DE=x,在Rt△CDE中,CE===x, 在Rt△ABC中, ∵=,AB=2, ∴BC=2, 在Rt△AFD中,DF=DE﹣EF=x﹣2, ∴AF===(x﹣2), ∵AF=BE=BC+CE. ∴(x﹣2)=2+x, 解得x=6. 答:树DE的高度为6米. 【点评】本题考查了解直角三角形的应用﹣﹣仰角、坡度问题、矩形的判定与性质、三角函数;借助仰角构造直角三角形并解直角三角形是解决问题的关键.