题目
已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P. (1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN; (2)如图2,连接ME、OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB; (3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN交于点R,连接RG,若HK:ME=2:3,BC=,求RG的长.
答案:.解:(1)如图1,∵AB⊥OE于点D,CH⊥MN于点K ∴∠ODB=∠OKC=90° ∵∠ODB+∠DFK+∠OKC+∠EON=360° ∴∠DFK+∠EON=180° ∵∠DFK+∠HFB=180° ∴∠HFB=∠EON ∵∠EON=2∠EHN ∴∠HFB=2∠EHN (2)如图2,连接OB, ∵OA⊥ME, ∴∠AOM=∠AOE ∵AB⊥OE ∴∠AOE=∠BOE ∴∠AOM+∠AOE=∠AOE+∠BOE, 即:∠MOE=∠AOB ∴ME=AB ∵∠EON=4∠CHN,∠EON=2∠EHN ∴∠EHN=2∠CHN ∴∠EHC=∠CHN ∵CH⊥MN ∴∠HPN=∠HNM ∵∠HPN=∠EPM,∠HNM=HEM ∴∠EPM=∠HEM ∴MP=ME ∴MP=AB (3)如图3,连接BC,过点A作AF⊥BC于F,过点A作AL⊥MN于L,连接AM,AC, 由(2)知:∠EHC=∠CHN,∠AOM=∠AOE ∴∠EOC=∠CON ∵∠EOC+∠CON+∠AOM+∠AOE=180° ∴∠AOE+∠EOC=90°,∠AOM+∠CON=90° ∵OA⊥ME,CH⊥MN ∴∠OQM=∠OKC=90°,CK=HK,ME=2MQ, ∴∠AOM+∠OMQ=90° ∴∠CON=∠OMQ ∵OC=OA ∴△OCK≌△MOQ(AAS) ∴CK=OQ=HK ∵HK:ME=2:3,即:OQ:2MQ=2:3 ∴OQ:MQ=4:3 ∴设OQ=4k,MQ=3k, 则OM===5k,AB=ME=6k 在Rt△OAC中,AC===5k ∵四边形ABCH内接于⊙O,∠AHC=∠AOC=×90°=45°, ∴∠ABC=180°﹣∠AHC=180°﹣45°=135°, ∴∠ABF=180°﹣∠ABC=180°﹣135°=45° ∴AF=BF=AB•cos∠ABF=6k•cos45°=3k 在Rt△ACF中,AF2+CF2=AC2 即:,解得:k1=1,(不符合题意,舍去) ∴OQ=HK=4,MQ=OK=3,OM=ON=5 ∴KN=KP=2,OP=ON﹣KN﹣KP=5﹣2﹣2=1, 在△HKR中,∠HKR=90°,∠RHK=45°, ∴=tan∠RHK=tan45°=1 ∴RK=HK=4 ∴OR=RN﹣ON=4+2﹣5=1 ∵∠CON=∠OMQ ∴OC∥ME ∴∠PGO=∠HEM ∵∠EPM=∠HEM ∴∠PGO=∠EPM ∴OG=OP=OR=1 ∴∠PGR=90° 在Rt△HPK中,PH===2 ∵∠POG=∠PHN,∠OPG=∠HPN ∴△POG∽△PHN ∴,即,PG= ∴RG===.