题目

如图,函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为      .   答案: 8 . 【考点】反比例函数系数k的几何意义. 【专题】数形结合. 【分析】设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可. 【解答】解:∵点P在y=上, ∴|xp|×|yp|=|k|=1, ∴设P的坐标是(a,)(a为正数), ∵PA⊥x轴, ∴A的横坐标是a, ∵A在y=﹣上, ∴A的坐标是(a,﹣), ∵PB⊥y轴, ∴B的纵坐标是, ∵B在y=﹣上, ∴代入得: =﹣, 解得:x=﹣3a, ∴B的坐标是(﹣3a,), ∴PA=|﹣(﹣)|=, PB=|a﹣(﹣3a)|=4a, ∵PA⊥x轴,PB⊥y轴,x轴⊥y轴, ∴PA⊥PB, ∴△PAB的面积是: PA×PB=××4a=8. 故答案为:8. 【点评】本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目.
数学 试题推荐