题目

设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为________. 答案:4 解析 (构造法)若x=0,则不论a取何值,f(x)≥0显然成立; 当x>0,即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为a≥-.设g(x)=-,则g′(x)=, 所以g(x)在区间上单调递增,在区间上单调递减, 因此g(x)max=g=4,从而a≥4. 当x<0,即x∈[-1,0)时,同理a≤-. g(x)在区间[-1,0)上单调递增, ∴g(x)min=g(-1)=4,从而a≤4,综上可知a=4.
数学 试题推荐