题目

(2019·山东中考模拟)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为_____. 答案:(2,0). 【解析】 如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a, OC=OB1+B1C=2+a,A2(2+a,a). ∵点A2在双曲线y=(x>0)上, ∴(2+a)•a=, 解得a=﹣1,或a=﹣﹣1(舍去), ∴OB2=OB1+2B1C=2+2﹣2=2, ∴点B2的坐标为(2,0); 作A3D⊥x轴于点D,设B2D=b,则A3D=b, OD=OB2+B2D=2+b,A2(2+b,b). ∵点A3在双曲线y=(x>0)上, ∴(2+b)•b=, 解得b=﹣+,或b=﹣﹣(舍去), ∴OB3=OB2+2B2D=2﹣2+2=2, ∴点B3的坐标为(2,0); 同理可得点B4的坐标为(2,0)即(4,0); …, ∴点Bn的坐标为(2,0), ∴点B6的坐标为(2,0), 故答案为:(2,0). 【点睛】本题考查了规律题,反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键.
数学 试题推荐