题目
如图,直线y=x+2于x、y轴分别交于点A、B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C移动的距离为 .
答案:+1 【分析】先求出直线y=x+2与y轴交点B的坐标为(0,2),再由C在线段OB的垂直平分线上,得出C点纵坐标为1,将y=1代入y=x+2,求得x=﹣1,即可得到C′的坐标为(﹣1,1),进而得出点C移动的距离. 【解答】解:∵直线y=x+2与y轴交于B点, ∴x=0时, 得y=2, ∴B(0,2). ∵以OB为边在y轴右侧作等边三角形OBC, ∴C在线段OB的垂直平分线上, ∴C点纵坐标为1. 将y=1代入y=x+2,得1=x+2, 解得x=﹣1. 故C点到y轴的距离为:,故点C移动的距离为: +1. 故答案为: +1. 【点评】本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为1是解题的关键.