题目

如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D. (1)求抛物线的函数解析式; (2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S. ①求S关于m的函数表达式; ②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.   答案:解:(1)将A、C两点坐标代入抛物线,得 , 解得:, ∴抛物线的解析式为y=﹣x2+x+8; (2)①∵OA=8,OC=6, ∴AC==10, 过点Q作QE⊥BC与E点,则sin∠ACB===, ∴=, ∴QE=(10﹣m), ∴S=•CP•QE=m×(10﹣m)=﹣m2+3m; ②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+, ∴当m=5时,S取最大值; 在抛物线对称轴l上存在点F,使△FDQ为直角三角形, ∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=, D的坐标为(3,8),Q(3,4), 当∠FDQ=90°时,F1(,8), 当∠FQD=90°时,则F2(,4), 当∠DFQ=90°时,设F(,n), 则FD2+FQ2=DQ2, 即+(8﹣n)2++(n﹣4)2=16, 解得:n=6±, ∴F3(,6+),F4(,6﹣), 满足条件的点F共有四个,坐标分别为 F1(,8),F2(,4),F3(,6+),F4(,6﹣).
数学 试题推荐