题目

.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F. (1)求证:△BCF≌△BA1D. (2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.   答案:【考点】旋转的性质;全等三角形的判定与性质;等腰三角形的性质. 【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D; (2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形. 【解答】(1)证明:∵△ABC是等腰三角形, ∴AB=BC,∠A=∠C, ∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置, ∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1, 在△BCF与△BA1D中, , ∴△BCF≌△BA1D; (2)解:四边形A1BCE是菱形, ∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置, ∴∠A1=∠A, ∵∠ADE=∠A1DB, ∴∠AED=∠A1BD=α, ∴∠DEC=180°﹣α, ∵∠C=α, ∴∠A1=α, ∴∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α, ∴∠A1=∠C,∠A1BC=∠AEC, ∴四边形A1BCE是平行四边形, ∴A1B=BC, ∴四边形A1BCE是菱形.
数学 试题推荐