题目

如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论: ①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2 其中正确的结论有(  ) A.1个   B.2个   C.3个   D.4个 答案:C【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质. 【分析】先判断出△ABD、BDC是等边三角形,然后根据等边三角形的三心(重心、内心、垂心)合一的性质,结合菱形对角线平分一组对角,三角形的判定定理可分别进行各项的判断. 【解答】解:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确; ②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确; ③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误; ④S△ABD=AB•DE=AB•BE=AB•AB=AB2,即④正确. 综上可得①②④正确,共3个. 故选C. 【点评】此题考查了菱形的性质、全等三角形的判定与性质及等边三角形的判定与性质,综合的知识点较多,注意各知识点的融会贯通,难度一般.  
数学 试题推荐