题目
已知数列{an}满足a1=1,且点(an,an+1)(n∈N*)在直线y=x+1上;数列{bn}的前n项和Sn=3n﹣1. (1)求数列{an},{bn}的通项公式; (2)若数列{an•bn}的前n项和为Tn,求使Tn<8Sn+成立的最大数n的值.
答案:【考点】数列的求和;数列递推式. 【专题】转化思想;分析法;等差数列与等比数列. 【分析】(1)由题意可得an+1=an+1,运用等差数列的通项公式可得an=n;再由b1=S1=2;bn=Sn﹣Sn﹣1,计算即可得到所求通项; (2)求得anbn=2n3n﹣1,运用数列的求和方法:错位相减法,结合等比数列的求和公式,可得Tn,由题意化简可得2n﹣1<16,解不等式即可得到所求最大值. 【解答】解:(1)由题意可得an+1=an+1, 可得an=a1+n﹣1=1+n﹣1=n; 由数列{bn}的前n项和Sn=3n﹣1, 可得b1=S1=2; bn=Sn﹣Sn﹣1=3n﹣1﹣(3n﹣1﹣1)=23n﹣1, 上式对n=1也成立. 则bn=23n﹣1; (2)anbn=2n3n﹣1, 前n项和为Tn=2(130+231+332+…+n3n﹣1), 即有3Tn=2(13+232+333+…+n3n), 相减可得,﹣2Tn=2(1+3+32+…+3n﹣1﹣n3n) =2(﹣n3n), 化简可得Tn=, Tn<8Sn+即为<8(3n﹣1)+, 化简为2n﹣1<16,解得n<8.5, 则n的最大值为8. 【点评】本题考查数列的通项的求法,注意等差数列的定义和通项公式,考查数列的求和方法:错位相减法,以及不等式恒成立问题的解法,注意运用等比数列的求和公式,属于中档题.