题目

如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.   答案:证明:∵四边形ABCD为正方形, ∴∠B=∠C=90°, ∴∠BEF+∠BFE=90°, ∵∠EFG=90°, ∴∠BFE+∠CFG=90°, ∴∠BEF=∠CFG, ∴△EBF∽△FCG.
数学 试题推荐
最近更新