题目

已知二次函数f(x)=x2-2ax+4,求在下列条件下,实数a的取值范围. (1)零点均大于1; (2)一个零点大于1,一个零点小于1; (3)一个零点在(0,1)内,另一个零点在(6,8)内. 答案:解析: (1)因为方程x2-2ax+4=0的两根均大于1,结合二次函数的单调性与零点存在性定理得解得2≤a<. (2)因为方程x2-2ax+4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在性定理得f(1)=5-2a<0,解得a>. (3)因为方程x2-2ax+4=0的一个根在(0,1)内,另一个根在(6,8)内,结合二次函数的单调性与零点存在性定理得解得<a<.
数学 试题推荐