题目
如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为______.
答案:1.6 【分析】 由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案. 【详解】 由旋转的性质可得:AD=AB, ∵∠B=60°, ∴△ABD是等边三角形, ∴BD=AB, ∵AB=2,BC=3.6, ∴CD=BC-BD=3.6-2=1.6. 故答案为1.6. 【点睛】 此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.