题目
如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为 .
答案: 3 . 【考点】菱形的性质. 【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2•S△ABC=BC•FG即可解决问题. 【解答】解:∵四边形ABCD是菱形,∠BAD=120°, ∴AB=BC=CD=AD,∠CAB=∠CAD=60°, ∴△ABC,△ACD是等边三角形, ∵EG⊥AC, ∴∠AEG=∠AGE=30°, ∵∠B=∠EGF=60°, ∴∠AGF=90°, ∴FG⊥BC, ∴2•S△ABC=BC•FG, ∴2××(6)2=6•FG, ∴FG=3. 故答案为3.