题目

已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为(  ) A.(1,﹣5)      B.(3,﹣13)      C.(2,﹣8)      D.(4,﹣20) 答案:C【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可. 【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4. ∴点M(m,﹣m2﹣4). ∴点M′(﹣m,m2+4). ∴m2+2m2﹣4=m2+4. 解得m=±2. ∵m>0, ∴m=2. ∴M(2,﹣8). 故选:C. 【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.
数学 试题推荐