题目

如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点. (1)求抛物线L1对应的函数表达式; (2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标; (3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标. 答案:【解答】解:(1)将x=2代入y=﹣x2﹣x+2,得y=﹣3,故点A的坐标为(2,﹣3), 将A(2,﹣1),C(0,﹣3)代入y=x2+bx+c,得 ,解得, ∴抛物线L1:y=x2﹣2x﹣3; (2)设点P的坐标为(x,x2﹣2x﹣3), 第一种情况:AC为平行四边形的一条边, ①当点Q在点P右侧时,则点Q的坐标为(x+2,﹣2x﹣3), 将Q(x+2,﹣2x﹣3)代入y=﹣x2﹣x+2,得 ﹣2x﹣3=﹣(x+2)2﹣(x+2)+2, 解得,x=0或x=﹣1, 因为x=0时,点P与C重合,不符合题意,所以舍去, 此时点P的坐标为(﹣1,0); ②当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3), 将Q(x﹣2,x2﹣2x﹣3)代入y=﹣x2﹣x+2,得 y=﹣x2﹣x+2,得 x2﹣2x﹣3=﹣(x﹣2)2﹣(x﹣2)+2, 解得,x=3,或x=﹣, 此时点P的坐标为(3,0)或(﹣,); 第二种情况:当AC为平行四边形的一条对角线时, 由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3), 故点Q的坐标为(2﹣x,﹣x2+2x﹣3), 将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣x2﹣x+2,得 ﹣x2+2x﹣3═﹣(2﹣x)2﹣(2﹣x)+2, 解得,x=0或x=﹣3, 因为x=0时,点P与点C重合,不符合题意,所以舍去, 此时点P的坐标为(﹣3,12), 综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣,)或(﹣3,12); (3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分∠PCR, 当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方, 过点P、R分别作y轴的垂线,垂足分别为S、T, 过点P作PH⊥TR于点H,则有∠PSC=∠RTC=90°, 由CA平分∠PCR,得∠PCA=∠RCA,则∠PCS=∠RCT, ∴△PSC∽△RTC, ∴, 设点P坐标为(x1,),点R坐标为(x2,), 所以有, 整理得,x1+x2=4, 在Rt△PRH中,tan∠PRH== 过点Q作QK⊥x轴于点K,设点Q坐标为(m,), 若OQ∥PR,则需∠QOK=∠PRH, 所以tan∠QOK=tan∠PRH=2, 所以2m=, 解得,m=, 所以点Q坐标为(,﹣7+)或(,﹣7﹣).
数学 试题推荐