题目

已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2). (1)求该二次函数的解析式. (2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由) (3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值. (注:在解题过程中,你也可以阅读后面的材料) 附:阅读材料    任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.    即:设一元二次方程ax2+bx+c=0的两根为x1,x2,    则:x1+x2=﹣,x1•x2=    能灵活运用这种关系,有时可以使解题更为简单.    例:不解方程,求方程x2﹣3x=15两根的和与积.    解:原方程变为:x2﹣3x﹣15=0 ∵一元二次方程的根与系数有关系:x1+x2=﹣,x1•x2= ∴原方程两根之和=﹣=3,两根之积==﹣15. 答案:(1)解:由于二次函数图象的顶点坐标为(0,1), 因此二次函数的解析式可设为y=ax2+1. ∵抛物线y=ax2+1过点(﹣1,), ∴=a+1. 解得:a=. ∴二次函数的解析式为:y=x2+1. (2)解:当x=﹣1时,y=, 当x=0时,y=1, 当x=3时,y=×32+1=, 结合图1可得:当﹣1<x<3时,y的取值范围是1≤y<. (3)①证明:∵△ABG的内切圆的圆心落在y轴上, ∴GP平分∠AGB. ∴直线GP是∠AGB的对称轴. 过点A作GP的对称点A′,如图2, 则点A′一定在BG上. ∵点A的坐标为(x1,y1), ∴点A′的坐标为(﹣x1,y1). ∵点A(x1,y1)、B(x2,y2)在直线y=kx+2上, ∴y1=kx1+2,y2=kx2+2. ∴点A′的坐标为(﹣x1,kx1+2)、点B的坐标为(x2,kx2+2). 设直线BG的解析式为y=mx+n,则点G的坐标为(0,n). ∵点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG上, ∴. 解得:. ∵A(x1,y1),B(x2,y2)是直线y=kx+2与抛物线y=x2+1的交点, ∴x1、x2是方程kx+2=x2+1即x2﹣4kx﹣4=0的两个实数根. ∴由根与系数的关系可得;x1+x2=4k,x1•x2=﹣4. ∴n==﹣2+2=0. ∴点G的坐标为(0,0). ∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG的内切圆的圆心落在y轴上. ②解:过点A作AC⊥OP,垂足为C,过点B作BD⊥OP,垂足为D,如图2, ∵直线y=kx+2与y轴相交于点P, ∴点P的坐标为(0,2). ∴PG=2. ∴S△ABG=S△APG+S△BPG =PG•AC+PG•BD =PG•(AC+BD) =×2×(﹣x1+x2) =x2﹣x1 = = = =4. ∴当k=0时,S△ABG最小,最小值为4. ∴△GAB面积的最小值为4.
数学 试题推荐