题目

如图,⊙O1与⊙O2外切与点D,直线l与两圆分别相切于点A、B,与直线 O1、O2相交于点M,且tan∠AM01=,MD=4. (1)求⊙O2的半径; (2)求△ADB内切圆的面积; (3)在直线l上是否存在点P,使△MO2P相似于△MDB?若存在,求出PO2的长;若不存在,请说明理由. 答案:解:(1)连结O1A、O2B,如图,设⊙O1的半径为r,⊙O2的半径为R, ∵⊙O1与⊙O2外切与点D, ∴直线O1O2过点D, ∴MO2=MD+O2D=4+R, ∵直线l与两圆分别相切于点A、B, ∴O1A⊥AB,O2B⊥AB, ∵tan∠AM01=, ∴∠AM01=30°, 在Rt△MBO2中,MO2=O2B=2R, ∴4+R=2R,解得R=4, 即⊙O2的半径为4; (2)∵∠AM02=30°, ∴∠MO2B=60°, 而O2B=O2D, ∴△O2BD为等边三角形, ∴BD=O2B=4,∠DBO2=60°, ∴∠ABD=30°, ∵∠AM01=30°, ∴∠MO1A=60°, 而O1A=O1D, ∴∠O1AD=∠O1DA, ∴∠O1AD=∠MO1A=30°, ∴∠DAB=60°, ∴∠ADB=180°﹣30°﹣60°=90°, 在Rt△ABD中,AD=BD=4,AB=2AD=8, ∴△ADB内切圆的半径===2﹣2, ∴△ADB内切圆的面积=π•(2﹣2)2=(16﹣8)π; (3)存在. 在Rt△MBO2中,MB=O2B=×4=12, 当△MO2P∽△MDB时,=,即=,解得O2P=8; 当△MO2P∽△MBD时,=,即=,解得O2P=8, 综上所述,满足条件的O2P的长为8或8.
数学 试题推荐
最近更新