题目
已知x0是函数f(x)=ex+的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则( ) A.f(x1)<0,f(x2)>0 B.f(x1)<0,f(x2)<0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0
答案:A【考点】函数的零点. 【专题】函数的性质及应用. 【分析】因为x0是函数f(x)=ex+的一个零点 可得到f(x0)=0,再由函数f(x)的单调性可得到答案. 【解答】解:∵x0是函数f(x)=ex+的一个零点, ∴f(x0)=0 ∵f(x)=ex+是单调递增函数, 且x1∈(1,x0),x2∈(x0,+∞), ∴f(x1)<f(x0)=0<f(x2) 故选:A. 【点评】本题主要考查函数的零点的定义,判断函数的零点所在的区间的方法,属于基础题.