题目

已知a>0,集合A={x||x+2|<a},B={x|ax>1},若A∩B≠,则实数a的取值范围是(    ) A.(2,+∞)                                 B.(0,1)C.(0,1)∪(2,+∞)                      D.(0,1)∪(1,+∞) 答案:思路解析:方法一:当a=2时,A∩B=,故排除A、D,当a=3时,A∩B≠,故排除B.故选C. 方法二:由|x+2|<a,得-a<x+2<a,即-a-2<x<a-2;由ax>1,得x>0(a>1时)或x<0(0<a<1时).因为A∩B≠,利用数轴,可得∴0<a<1或a>2.答案:C
数学 试题推荐