题目
如图,在正方体AC1中,(1)求BC1与平面ACC1A1所成的角;(2)求A1B1与平面A1C1B所成的角.
答案:解析:(1)设所求角为α,先证BD⊥平面ACC1A1,则sinα=sin∠OC1B=,故α=30°. (2)△A1B1C1是正三角形,且A1B1=B1C1=BB1.∴棱锥B1—A1BC1是正三棱锥.过B1作B1H⊥平面A1BC1,连结A1H,∠B1A1H是A1B1与平面A1C1B所成的角.设A1B1=a,则A1B= ,得A1H=.故cos∠B1A1H=,所求角为arccos.另法:连结B1C交BC1于E,连结A1E,过B1作B1H⊥A1E于H,得B1E⊥BC1,BC1⊥A1B1,∴BC1⊥平面A1B1E.∴BC1⊥B1H.∴B1H⊥平面ABC1.∴θ=∠B1A1H为所求角.∴在△B1A1E中,tanθ=. ∴θ=arctan.