题目
已知函数f(x)=x2-2x-3,x∈[0,1],g(x)=x3-3a2x-2a,x∈[0,1].(Ⅰ)求f(x)的值域M;(Ⅱ)若a≥1,求g(x)的值域N;(Ⅲ)在(Ⅱ)的条件下,若对于任意的x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0),求a的取值范围.
答案:解:(Ⅰ)∵f(x)=(x-1)2-4 x∈[0,1]故f(x)值域为M=[-4,-3](Ⅱ)∵g′(x)=3x2-3a2=3(x2-a2) ∵x∈[0,1) a≥1.∴x2-a2≤0 即g′(x)≤0∴g′(x)=x2-3a2x-2a在[0,1]上单调递减故g(x)的值域为N=[1-2a-3a2,-2a] (Ⅲ)∵对任意x1∈[0,1],总存在x0∈[0,1)使f(x1)=g(x0)∴MN.∴ 即又∵a≥1 ∴a∈[1,].