题目
在金融危机中,某钢材公司积压了部分圆钢,经清理知共有2009根.现将它们堆放在一起. (1)若堆放成纵断面为正三角形(每一层的根数比上一层根数多1根),并使剩余的圆钢尽可能地少,则剩余了多少根圆钢? (2)若堆成纵断面为等腰梯形(每一层的根数比上一层根数多1根),且不少于七层, (Ⅰ)共有几种不同的方案? (Ⅱ)已知每根圆钢的直径为10cm,为考虑安全隐患,堆放高度不得高于4m,则选择哪个方案,最能节省堆放场地?
答案:解:(1)当纵断面为正三角形时,设共堆放层,则从上到下每层圆钢根数是以1为首项、1为公差的等差数列,且剩余的圆钢一定小于根,从而由且得,当时,使剩余的圆钢尽可能地少,此时剩余了56根圆钢; (2)(Ⅰ)当纵断面为等腰梯形时,设共堆放层,则从上到下每层圆钢根数是以为首项、1为公差的等差数列,从而,即 ,因与的奇偶性不同,所以与的奇偶性也不同,且,从而由上述等式得: 或或或,所以共有4种方案可供选择. (Ⅱ)因层数越多,最下层堆放得越少,占用面积也越少,所以由(2)可知: 若,则,说明最上层有29根圆钢,最下层有69根圆钢,此时如图所示,两腰之长为400 cm,上下底之长为280 cm和680cm,从而梯形之高为 cm, 而,所以符合条件; 若,则,说明最上层有17根圆钢,最下层有65根圆钢,此时如图所示,两腰之长为480 cm,上下底之长为160 cm和640cm,从而梯形之高为 cm,显然大于4m,不合条件,舍去; 综上所述,选择堆放41层这个方案,最能节省堆放场地.