题目
在Rt△ABC中,∠ABC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F. (1)证明四边形ADCF是菱形; (2)若AC=4,AB=5,求菱形ADCF的面积.
答案:【考点】菱形的判定与性质. 【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠ABC=90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形; (2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案. 【解答】(1)证明:如图,∵AF∥BC, ∴∠AFE=∠DBE, ∵E是AD的中点,AD是BC边上的中线, ∴AE=DE,BD=CD, 在△AFE和△DBE中, , ∴△AFE≌△DBE(AAS); ∴AF=DB. ∵DB=DC, ∴AF=CD, ∴四边形ADCF是平行四边形, ∵∠BAC=90°,D是BC的中点, ∴AD=DC=BC, ∴四边形ADCF是菱形; (2)解:连接DF, ∵AF∥BC,AF=BD, ∴四边形ABDF是平行四边形, ∴DF=AB=5, ∵四边形ADCF是菱形, ∴S=AC•DF=10.