题目
已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF. (1)求证:BE = DF; (2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
答案:证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B = ∠D = 90°. ∵AE = AF,∴. ∴BE=DF. (2)四边形AEMF是菱形. ∵四边形ABCD是正方形,∴∠BCA = ∠DCA = 45°,BC = DC. ∵BE=DF,∴BC-BE = DC-DF. 即. ∴. ∵OM = OA,∴四边形AEMF是平行四边形. ∵AE = AF, ∴平行四边形AEMF是菱形.