题目

如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标. 答案:解:(1)∵B(4,m)在直线线y=x+2上, ∴m=4+2=6, ∴B(4,6), ∵A(,)、B(4,6)在抛物线y=ax2+bx﹣4上, ∴, ∵c=6, ∴a=2,b=﹣8, ∴y=2x2﹣8x+6. (2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6), ∴PC=(n+2)﹣(2n2﹣8n+6), =﹣2n2+9n﹣4, =﹣2(n﹣)2+, ∵PC>0, ∴当n=时,线段PC最大且为. (3)设直线AC的解析式为y=﹣x+b, 把A(,)代入得:=﹣+b,解得:b=3, ∴直线AC解析式:y=﹣x+3, 点C在抛物线上,设C(m,2m2﹣8m+6),代入y=﹣x+3得:2m2﹣8m+6=﹣m+3, 整理得:2m2﹣7m+3=0, 解得;m=3或m=, ∴P(3,0)或P(,).
数学 试题推荐
最近更新