题目
如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证: (1)AF=CG; (2)CF=2DE.
答案:【考点】全等三角形的判定与性质;等腰直角三角形. 【专题】证明题. 【分析】(1)要证AF=CG,只需证明△AFC≌△CBG即可. (2)延长CG交AB于H,则CH⊥AB,H平分AB,继而证得CH∥AD,得出DG=BG和△ADE与△CGE全等,从而证得CF=2DE. 【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB, ∴∠ACG=∠BCG=45°, 又∵∠ACB=90°,AC=BC, ∴∠CAF=∠CBF=45°, ∴∠CAF=∠BCG, 在△AFC与△CGB中, , ∴△AFC≌△CBG(ASA), ∴AF=CG; (2)延长CG交AB于H, ∵CG平分∠ACB,AC=BC, ∴CH⊥AB,CH平分AB, ∵AD⊥AB, ∴AD∥CG, ∴∠D=∠EGC, 在△ADE与△CGE中, , ∴△ADE≌△CGE(AAS), ∴DE=GE, 即DG=2DE, ∵AD∥CG,CH平分AB, ∴DG=BG, ∵△AFC≌△CBG, ∴CF=BG, ∴CF=2DE. 【点评】本题考查了三角形全等的判定和性质、等腰三角形的性质、平行线的判定及性质,三角形全等是解本题的关键.