题目
如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作: ①以点C为圆心,以CB为半径画弧,角AB于点G;分别以点G、B为圆心,以大于的长为半径画弧,两弧交点K,作射线CK; ②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E. 请你观察图形,根据操作结果解答下列问题; (1)线段CD与CE的大小关系是☆.(3分) (2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.(5分)
答案:【解答】解:(1)CD=CE, 由作图知CE⊥AB,BD平分∠CBF, ∴∠1=∠2=∠3, ∵∠CEB+∠3=∠2+∠CDE=90°, ∴∠CEB=∠CDE, ∴CD=CE, 故答案为:CD=CE; (2)∵BD平分∠CBF,BC⊥CD,BF⊥DF, ∴BC=BF,∠CBD=∠FBD, 在△BCD和△BFD中,