题目
已知函数 (1)解不等式. (2)若对任意的x1R,都有x2R,使得f(x1)=g(x2)成立,求实数a的取值范围.
答案:解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5 ∴﹣7<|x﹣1|<3, 得不等式的解为﹣2<x<4 (2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立, 所以{y|y=f(x)}⊆{y|y=g(x)}, 又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|, g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5, 所以实数a的取值范围为a≥﹣1或a≤﹣5.