题目

某企业信息部进行市场调研发现: 信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表: x(万元) 1 2 2.5 3 5 yA(万元) 0.4 0.8 1 1.2 2 信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元. (1)求出yB与x的函数关系式; (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式; (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少? 答案:【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx, 求解得: ∴yB与x的函数关系式:yB=﹣0.2x2+1.6x (2)根据表格中对应的关系可以确定为一次函数, 故设函数关系式yA=kx+b,将(1,0.4)(2,0.8)代入得:,[来源:学*科*网] 解得:, 则yA=0.4x; (3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元, W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8 即当投资B3万元,A12万元时所获总利润最大,为7.8万元.
数学 试题推荐