题目

在如图所示,xoy坐标系第一象限的三角形区域(坐标如图中所标注)内有垂直于纸面向外的 匀强磁场,在x 轴下方有沿+y方向的匀强电场,电场强度为E。将一个质量为m、带电量为+q的粒子(重力不计)从P(0,-a)点由静止释放。由于x轴上存在一种特殊物质,使粒子每经过一次x轴速 度大小变为穿过前的倍。 (1)欲使粒子能够再次经过x轴,磁场的磁感应强度B0最小是多少? (2)在磁感应强度等于第(1)问中B0的情况下,求粒子在磁场中的运动时间; (3)若磁场的磁感应强度变为第(1)问中B0的2倍,求粒子运动的总路程。 答案:(1)设粒子到O点时的速度为v0,由动能定理有  解得(1分) 粒子经过O点后,速度为v1,(1分) 如图甲所示,粒子进入磁场后的轨迹圆与磁场边界相切时,磁感应强度最小为B0。设粒子轨道半径为R1,有(1分) 由得   (2分) (2)如图甲,粒子经O1点进入电场区域做匀减速运动,后又加速返回,再次进入磁场时的速率(1分) 此时粒子做圆周运动的半径(1分) 其运动轨迹如图甲所示,此后不再进入磁场。由几何关系可知, 则粒子在磁场中运动的时间为(3分) (3)若B=2B0,粒子的运动情况如图乙所示,粒子经过O点第一次进入磁场时的速率仍为v1,在磁场中做圆周运动的半径记为,由第(1)问可知, ,(1分) 粒子从O1点穿过x轴进入电场时速率为,运动到P1点后返回,则由动能定理 解得   (1分) 当粒子第二次进入磁场时的速率 做圆周运动的半径为 (1分) 粒子从O2点穿过x轴进入电场时速率为, 运动到P2点后返回,则由动能定理 解得   (1分)………… 依此类推可知,当粒子第n次进入磁场时,其在磁场中做圆周运动的轨道半径为,再进入电场中前进的距离 (1分) 因此,粒子运动总路程 == (1分)
物理 试题推荐