题目
如下图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内。已知沿y轴正方向发射的粒子在时刻刚好从磁场边界上点离开磁场。求:⑴ 粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;⑵ 此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;⑶ 从粒子发射到全部粒子离开磁场所用的时间。
答案:⑴ ⑵速度与y轴的正方向的夹角范围是60°到120°[来源:] ⑶从粒子发射到全部离开所用 时间 为 【解析】 ⑴粒子沿y轴的正方向进入磁场,从P点经过做OP的垂直平分线与x轴的交点为圆心,根据直角三角形有 解得 ,则粒子做圆周运动的的圆心角为120°,周期为[来源:学,科,网Z,X,X,K] 粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得 ,,化简得 ⑵仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出。 角度最小时从磁场右边界穿出圆心角120°,所经过圆弧的弦与⑴中相等穿出点如图,根据弦与半径、x轴的夹角都是30°,所以此时速度与y轴的正方向的夹角是60°。 角度最大时从磁场左边界穿出,半径与y轴的的夹角是60°,则此时速度与y轴的正方向的夹角是120°。 所以速度与y轴的正方向的夹角范围是60°到120° ⑶在磁场中运动时间最长的粒子的轨迹应该与磁场的右边界相切, 在三角形中两个相等的腰为,而它的高是 ,半径与y轴的的夹角是30°,这种粒子的圆心角是240°。所用 时间 为。 所以从粒子发射到全部离开所用 时间 为。