题目

如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为mA=2 kg、mB=1 kg、mC=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞。求A与C碰撞后瞬间A的速度大小。(用动量解决) 答案:因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为vA,C的速度为vC,以向右为正方向,由动量守恒定律得 mAv0=mAvA+mCvC①(2分) A与B在摩擦力作用下达到共同速度,设共同速度为vAB,由动量守恒定律得 mAvA+mBv0=(mA+mB)vAB②(2分) A与B达到共同速度后恰好不再与C碰撞,应满足 vAB=vC③(1分) 联立①②③式,代入数据得 vA=2 m/s.(2分) 【答案】 2 m/s
物理 试题推荐